Myosin VI and its binding partner optineurin are involved in secretory vesicle fusion at the plasma membrane
نویسندگان
چکیده
During constitutive secretion, proteins synthesized at the endoplasmic reticulum (ER) are transported to the Golgi complex for processing and then to the plasma membrane for incorporation or extracellular release. This study uses a unique live-cell constitutive secretion assay to establish roles for the molecular motor myosin VI and its binding partner optineurin in discrete stages of secretion. Small interfering RNA-based knockdown of myosin VI causes an ER-to-Golgi transport delay, suggesting an unexpected function for myosin VI in the early secretory pathway. Depletion of myosin VI or optineurin does not affect the number of vesicles leaving the trans-Golgi network (TGN), indicating that these proteins do not function in TGN vesicle formation. However, myosin VI and optineurin colocalize with secretory vesicles at the plasma membrane. Furthermore, live-cell total internal reflection fluorescence microscopy demonstrates that myosin VI or optineurin depletion reduces the total number of vesicle fusion events at the plasma membrane and increases both the proportion of incomplete fusion events and the number of docked vesicles in this region. These results suggest a novel role for myosin VI and optineurin in regulation of fusion pores formed between secretory vesicles and the plasma membrane during the final stages of secretion.
منابع مشابه
Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis
Myosin VI plays a role in the maintenance of Golgi morphology and in exocytosis. In a yeast 2-hybrid screen we identified optineurin as a binding partner for myosin VI at the Golgi complex and confirmed this interaction in a range of protein interaction studies. Both proteins colocalize at the Golgi complex and in vesicles at the plasma membrane. When optineurin is depleted from cells using RNA...
متن کاملDefects in optineurin- and myosin VI-mediated cellular trafficking in amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder primarily affecting motor neurons. Mutations in optineurin cause a small proportion of familial ALS cases, and wild-type (WT) optineurin is misfolded and forms inclusions in sporadic ALS patient motor neurons. However, it is unknown how optineurin mutation or misfolding leads to ALS. Optineurin acts an adaptor protein con...
متن کاملMyosin motor proteins are involved in the final stages of the secretory pathways.
In eukaryotes, the final steps in both the regulated and constitutive secretory pathways can be divided into four distinct stages: (i) the 'approach' of secretory vesicles/granules to the PM (plasma membrane), (ii) the 'docking' of these vesicles/granules at the membrane itself, (iii) the 'priming' of the secretory vesicles/granules for the fusion process, and, finally, (iv) the 'fusion' of ves...
متن کاملMyosin VI and Optineurin Are Required for Polarized EGFR Delivery and Directed Migration
The polarized trafficking of membrane proteins into the leading edge of the cell is an integral requirement for cell migration. Myosin VI and its interacting protein optineurin have previously been shown to operate in anterograde trafficking pathways, especially for the polarized delivery of cargo to the basolateral domain in epithelial cells. Here we show that in migratory cells ablation of my...
متن کاملMyosin VI and its cargo adaptors - linking endocytosis and autophagy.
The coordinated trafficking and tethering of membrane cargo within cells relies on the function of distinct cytoskeletal motors that are targeted to specific subcellular compartments through interactions with protein adaptors and phospholipids. The unique actin motor myosin VI functions at distinct steps during clathrin-mediated endocytosis and the early endocytic pathway - both of which are in...
متن کامل